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1. Introduction: Local-to-Global Principles and Motivation

Many problems in mathematics exhibit a tension between local behav-
ior and global behavior on a space. Sheaf theory provides a systematic
framework to track data locally on a topological space and determine how
to “glue” or assemble this local data into global structures. This local-to-
global perspective is pervasive in areas such as algebraic geometry, topology,
differential geometry, and even logic and computer science. The guiding
question is: when can local solutions or constructions be uniquely merged
into a global one? [GQ24]

1.1. The Local-to-Global Phenomenon. We illustrate the local vs. global
distinction with a few examples:

• Topology: A continuous function can be defined locally on each
set of an open cover of a space, but these local definitions might not
agree globally. For instance, a manifold can be covered by coordinate
patches (local coordinate functions exist), yet there may be no single
global coordinate chart covering the entire manifold.

• Algebraic Geometry: Regular functions on an algebraic variety
are defined locally on affine patches. Whether these local functions
extend to a global regular function is a central question. In fact, one
defines varieties by gluing together affine algebraic pieces, and not
every local regular function extends globally.

• Differential Geometry: One can define vector fields or differential
forms on local neighborhoods of a manifold, but there may be global
obstructions. A classic example: a nowhere-vanishing local section of
the tangent bundle exists in small patches, but on a non-orientable
manifold it cannot be extended globally (this relates to the non-
existence of a global nowhere-vanishing vector field, an obstruction
measured by the orientability).

• Gauge Theory (Physics): Locally one can choose a gauge (a
function describing a field, like the electromagnetic potential in each
patch), but globally there might be a mismatch leading to nontrivial
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topological classes (e.g. a magnetic monopole yields a potential de-
fined locally but not globally continuous, reflecting a non-zero second
cohomology class).

In each case, the question is whether locally defined data (continuous func-
tions, sections of a bundle, etc.) that agree on overlaps can be “glued” to a
valid object on the union of the patches. Sheaf theory formalizes this situa-
tion by assigning data to every open set and imposing conditions that ensure
consistency and gluability of that data. The advantage of the sheaf perspec-
tive is that it provides a language and tools (notably sheaf cohomology) to
measure the obstructions to gluing local data into global data.

1.2. From Functions to Sheaves. A naive approach to a local-to-global
problem is to consider the collection of all functions (or sections, etc.) de-
fined on each open subset of a space. This leads to the notion of a presheaf,
which associates to each open U some set (or algebraic structure) F (U) of
data on U , together with restriction maps to smaller opens. However, not
every presheaf allows gluing of local sections; additional axioms are needed.
A sheaf is a presheaf that satisfies these axioms ensuring uniqueness and
existence of glued sections. We will formalize these definitions in the next
sections.

The power of sheaf theory comes not only from organizing data but also
from sheaf cohomology, a machinery that measures the failure of the local-
to-global principle. Roughly, if local data patch together perfectly, certain
cohomology groups vanish; when there are obstructions, those appear as
nonzero cohomology classes. Sheaf cohomology has become fundamental in
modern algebraic geometry, providing powerful generalizations of classical
results (such as the Riemann–Roch theorem, which was originally proved
in the 19th century using purely classical methods) and many classification
results. It establishes deep connections between topology, analysis, and
algebraic geometry.

In this paper, we assume familiarity with basic category theory (cat-
egories, functors, limits/colimits) and basic algebraic topology (e.g. the
notion of a chain complex and homology), but no prior knowledge of sheaf
theory or homological algebra. We proceed from the definition of presheaves
and sheaves, through examples and foundational constructions (morphisms,
stalks, sheafification), and then focus on the theory of sheaf cohomology.
Along the way, we include examples and exercises to illustrate key points.
We use standard notation and conventions from algebraic topology and al-
gebraic geometry texts.

2. Presheaves

In essence, a presheaf is a rule that assigns to each open set of a topologi-
cal space some data (such as functions or other mathematical objects defined
on that open set), with the requirement that these data are consistent un-
der restriction to smaller opens. The elements of this data set are called
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sections, which intuitively can be thought of as functions or mathematical
objects that are defined over a specific open set. Presheaves formalize the
idea of “local data structure on a space”. We give the formal definition and
then illustrate with examples.

Definition 2.1 (Presheaf). Let X be a topological space. A presheaf F on
X consists of the following data:

• For each open set U ⊆ X, an object F (U) in some category (such as
sets, abelian groups, rings, or modules), whose elements are called
sections of F over U . We often denote a section s ∈ F (U) by s|U
when we wish to emphasize its domain.

• For each inclusion of open sets V ⊆ U ⊆ X, a restriction map

ρFU,V : F (U) → F (V ),

which is a morphism in the relevant category, often written as s 7→
s|V for s ∈ F (U), subject to the following axioms:

– Identity: For any open set U , the restriction to itself is the
identity: if id : U ↪→ U is the identity inclusion, then ρFU,U =

idF (U) (so every section restricts to itself on the same set).
– Transitivity: If W ⊆ V ⊆ U are open sets, then restrictions

compose as expected: ρFV,W ◦ ρFU,V = ρFU,W . In other words,
restricting a section from U to W directly is the same as first
restricting to V then to W .

The pair (F, ρF ) (often just F ) is called a presheaf on X. Common examples
include presheaves of abelian groups, rings, or modules, where each F (U)
has the corresponding algebraic structure and each restriction map preserves
this structure. We often write F : U 7→ F (U), U open in X. [Rot09]

Equivalently, for those familiar with category theory, a presheaf of sets
on X is the same as a contravariant functor from the category of open sets
of X (with inclusions as morphisms) to the category of sets. [Rot09] In this
language, F assigns each open U an object F (U) and each inclusion V ⊆ U
a morphism F (U) → F (V ) (the restriction), satisfying the functoriality
conditions (identity and composition) automatically.

Example 2.2. We list some fundamental examples of presheaves on a topo-
logical space X:

(1) Continuous Functions: For a fixed target space (e.g. R or C),
let F (U) = C0(U) be the set of all continuous functions on U . For
V ⊆ U , define ρU,V (f) = f |V by restriction of the domain. This
clearly satisfies the identity and transitivity axioms, so U 7→ C0(U)
is a presheaf on X. Similarly, one can define presheaves Ck(U) of
Ck (continuously k-times differentiable) functions on U , or C∞(U)
of smooth functions if X has a differentiable manifold structure.
[Vak24]
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(2) Constant Presheaf: Fix a set S. Define F (U) = S for every open
U , and let each restriction map ρU,V : S → S be the identity on S.
This presheaf F simply assigns the same set S to every open set (in-
tuitively pretending that a “section” over U is just an element of S,
with no further dependence on U). We call this the constant presheaf
with fiber S. It vacuously satisfies the presheaf axioms (identity and
transitivity are trivial here). Warning: This F will not in general
be a sheaf unless X is connected (we will revisit this).

(3) Sections of a Bundle: Let π : E → X be a (continuous) fiber
bundle or more generally any map of spaces. Define a presheaf F by
F (U) = {(continuous) sections s : U → E of π}, i.e. maps s such
that π ◦ s = idU . If V ⊆ U , restriction is given by ρU,V (s) = s|V ,
the section obtained by restricting s’s domain. This is a presheaf:
identity is clear, and if W ⊂ V ⊂ U , then (s|V )|W = s|W . For
instance, if E is a topological vector bundle on X, F (U) is the space
of continuous (or smooth, etc.) sections of the bundle over U . In an
important special case, π could be the trivial bundle X × A → X
with fiber A an abelian group; then sections on U correspond to
arbitrary continuous functions U → A, and F is the presheaf of A-
valued functions on X. The special case of locally constant functions
arises when A has the discrete topology.

(4) Open-set Sheaf: Define F (U) = {V | V is an open subset of U},
the power set of U restricted to opens. If V ⊆ U are open, let
ρU,V : F (U) → F (V ) be given by intersection: for W ∈ F (U) (so
W is open in U), ρU,V (W ) = W ∩ V , which is an open subset of V
and hence in F (V ). One checks easily that this satisfies the presheaf
axioms. Moreover, it is actually a sheaf: if {Ui} is an open cover of
U and we have a collection of open sets Wi ∈ F (Ui) that agree on
overlaps (i.e., Wi∩Uj = Wj∩Ui for all i, j), then these glue uniquely
to an open set W =

⋃
iWi ∈ F (U) where W ∩Ui = Wi for all i. This

can be seen as a special case of example (1) where the target space
is the Sierpinski space. Intuitively, this sheaf assigns to each open U
the collection of all its open subsets, providing a way to encode the
topology of X within the sheaf framework.

Presheaves are very flexible, but the lack of additional conditions means
they might not reflect the desired local-to-global properties. In particular, a
presheaf does not require that sections which locally agree must be identical,
nor that locally defined sections can always be glued into a global section.
These crucial properties are imposed in the definition of a sheaf, which we
introduce next. The examples above illustrate typical presheaves. Before
defining sheaves, we formalize how a presheaf can fail the “local consistency”
requirements:

Definition 2.3 (Morphisms of Presheaves). If F andG are presheaves onX,
a morphism of presheaves ϕ : F → G is a collection of maps {ϕU : F (U) →
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G(U)}U⊆X,U open such that for every inclusion V ⊆ U , the following diagram
commutes:

F (U)
ϕU−−−−→ G(U)

ρFU,V

y yρGU,V

F (V )
ϕV−−−−→ G(V ) ,

i.e. ϕV (s|V ) = (ϕU (s))|V for every s ∈ F (U). This is just a natural trans-
formation of functors in the categorical view. Morphisms of presheaves
compose in the obvious way and one obtains the category of presheaves on
X. If each ϕU is bijective, we call ϕ an isomorphism of presheaves (and F,G
are isomorphic).

Morphisms of presheaves allow us to compare different presheaf struc-
tures. In particular, any sheaf (to be defined) is in particular a presheaf, so
these notions apply to sheaves as well. The category of sheaves on X will
be a full subcategory of the category of presheaves.

3. Sheaves

A sheaf is a presheaf that satisfies the additional local consistency ax-
ioms: (1) if two sections agree locally, they must coincide globally (local
identity, or separation axiom), and (2) any collection of locally compatible
sections arises as the restriction of a unique global section (gluing, or exis-
tence axiom). These conditions ensure that the presheaf actually captures
the idea of “local data that determine a unique global outcome”. More
formally:

Definition 3.1 (Sheaf). A presheaf F on X (of sets) is said to be a sheaf if
it satisfies the following sheaf axioms in addition to the presheaf axioms:

• Locality (Uniqueness/Separation): If {Ui}i∈I is an open cover
of an open set U ⊆ X, and if s, t ∈ F (U) are two sections such that
s|Ui = t|Ui for all i ∈ I, then s = t in F (U). In other words, a section
is uniquely determined by its values on the members of an open cover.
Equivalently, if a section restricts to the zero (or identity) section on
each piece of a cover, it must be zero; no nontrivial section can vanish
on all pieces of a cover.

• Gluing (Existence): If {Ui}i∈I is an open cover of U and we
have a collection of sections si ∈ F (Ui) for each i, which are locally
compatible in the sense that on every nonempty overlap Ui ∩Uj , the
restrictions agree: si|Ui∩Uj = sj |Ui∩Uj for all i, j, then there exists
at least one section s ∈ F (U) (a global section on U) such that
s|Ui = si for all i ∈ I. This s is said to glue or extend the collection
{si}. [Jag23]

If F is a sheaf, we often call its sections simply “sections” without always
mentioning the open set (context usually clarifies the domain). A sheaf of
abelian groups (rings, etc.) is defined similarly (the data are abelian
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groups, and restriction maps are homomorphisms), and the sheaf axioms
above are imposed on the underlying sets of sections.

The sheaf axioms are often summarized by saying that for any open cover
{Ui} of U , the sequence

0 → F (U)
δ−−→

∏
i

F (Ui) ⇒
∏
i,j

F (Ui ∩ Uj)

is exact. Let’s explain this sequence in detail:

• The first map F (U) →
∏

i F (Ui) sends a global section s ∈ F (U) to
the collection of its restrictions (s|Ui)i to each open set in the cover.

• The double arrow
∏

i F (Ui) ⇒
∏

i,j F (Ui ∩Uj) represents two differ-
ent restriction maps:

– The first restricts each si ∈ F (Ui) to si|Ui∩Uj ∈ F (Ui ∩ Uj)
– The second restricts each sj ∈ F (Uj) to sj |Ui∩Uj ∈ F (Ui ∩ Uj)

“Exactness” here means that the kernel of the second arrow equals the
image of the first. In other words, a collection of sections (si)i ∈

∏
i F (Ui)

comes from a global section in F (U) if and only if they agree on all overlaps:
si|Ui∩Uj = sj |Ui∩Uj for all i, j.

This exactness encodes both sheaf axioms:

• Locality axiom (injectivity of F (U) →
∏

i F (Ui)): If two global
sections s, t ∈ F (U) agree on each Ui (i.e., s|Ui = t|Ui for all i), then
they must be identical (s = t). Equivalently, if s ̸= t, there must
exist some Ui where s|Ui ̸= t|Ui .

• Gluing axiom (surjectivity onto the equalizer): If a collection of
sections si ∈ F (Ui) satisfies the compatibility condition si|Ui∩Uj =
sj |Ui∩Uj for all i, j, then there exists a global section s ∈ F (U) that
restricts correctly to each Ui (i.e., s|Ui = si for all i).

This categorical interpretation reveals how sheaves enforce the principle
that compatible local data uniquely determine global data. In practice, we
will mainly work with the concrete formulation given earlier.

A presheaf that satisfies only the Locality axiom is sometimes called a
separated presheaf (or pre-sheaf in older literature), but the term and dis-
tinction won’t be needed much here; we primarily care about full sheaves.

Example 3.2. Revisiting the presheaves of Example 2.2, we identify which
are sheaves:

(1) Sheaf of Continuous Functions: U 7→ C0(U) is actually a sheaf.
The locality axiom holds because if two continuous functions agree
on each piece of an open cover, they agree everywhere on the union
(since points of U lie in some piece and the functions agree there).
More formally, if f, g ∈ C0(U) with f |Ui = g|Ui for all i, then for each
x ∈ U pick some Ui containing x, and f(x) = g(x) since x ∈ Ui. Thus
f = g globally. The gluing axiom also holds: given continuous fi ∈
C0(Ui) that agree on overlaps Ui∩Uj , one can construct a continuous



INTRODUCTION TO SHEAF THEORY AND SHEAF COHOMOLOGY 7

function f on
⋃

i Ui = U by defining f(x) = fi(x) if x ∈ Ui. This is
well-defined because if x ∈ Ui ∩ Uj , fi(x) = fj(x) by hypothesis. To
see f is continuous, note that each x has a neighborhood where f
equals one of the fi, so f is locally continuous and hence continuous
on U . Moreover f restricts to each fi. Uniqueness is ensured by
the locality axiom. Thus C0

X , the presheaf of continuous real-valued

functions on X, is a sheaf. By similar reasoning, Ck
X and C∞

X (on a
differentiable manifold X) are sheaves of functions.

(2) Sheaf of Differentiable Functions: As above, F (U) = C∞(U)
is a sheaf of smooth functions (on a smooth manifold X). The
sheaf axioms hold because smoothness is a local property. For the
gluing axiom, if we have locally smooth functions fi ∈ C∞(Ui) that
agree on overlaps Ui ∩ Uj , they produce a well-defined function f
on U = ∪iUi. This function f is automatically smooth because
smoothness is characterized by local behavior: a function is smooth
if and only if it is smooth in a neighborhood of every point. Since
every point x ∈ U is contained in some Ui where f restricts to
the smooth function fi, the glued function f inherits smoothness
naturally. The locality axiom (uniqueness) is clear: if two smooth
functions agree locally everywhere, they are identical.

(3) Sections of a Vector Bundle: For a continuous (or smooth) vector
bundle E → X, the presheaf U 7→ {sections of E on U} is a sheaf.
The sheaf axioms are usually part of the definition of a fiber bundle:
local sections that agree on overlaps give a unique global section
because locally (with respect to a trivializing cover) one can patch
the sections using a partition of unity or directly by definition of
bundles. Thus, the sheaf of sections of E is often denoted Γ(X,E)
for global sections, and Γ(U,E) for sections over U . If E = X × A
is a trivial bundle with fiber an abelian group A, then Γ(U,E) are
just A-valued continuous functions on U . If A is discrete (or U is
connected), these are precisely the locally constant functions. We
denote by AX the sheaf of locally constant A-valued functions on X,
called the constant sheaf (with stalk A).

(4) Sheaf of Holomorphic Functions: In complex analysis or on a
complex manifold X, the assignment U 7→ OX(U), where OX(U) is
the ring of holomorphic (complex-analytic) functions on U , defines
a sheaf of rings on X. The gluing axiom in this case is a nontrivial
theorem of complex analysis: holomorphic functions that agree on
overlaps extend to a holomorphic function on the union (this follows
from the identity theorem and analytic continuation). Thus OX is a
sheaf (in fact, a sheaf of rings, and even of C-algebras) on X. This
sheaf is fundamental in complex geometry; for example, its higher
cohomology groups yield important invariants of X.

(5) Constant Presheaf (revisited): The presheaf F with F (U) =
S for all U (from Example 2.2(2)) is not a sheaf in general. The
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issue is the gluing axiom: suppose X is the union of two disjoint
nonempty open sets U1, U2 (so X is disconnected). Take sections
s1 ∈ S = F (U1) and s2 ∈ S = F (U2) that are different elements
of S. On the overlap U1 ∩ U2 = ∅, the compatibility condition is
vacuously true (any condition on the empty set is trivially satisfied),
so {s1, s2} is a locally compatible family on the cover {U1, U2}. The
gluing axiom would demand a section s ∈ F (X) such that s|Ui = si.
But F (X) = S only has one element if the sheaf property held
(because on X itself s would equal s1 on U1 and s2 on U2, forcing
s1 = s2 if s existed, which is not the case by our choice). Thus
no single element of S can restrict to give two different values on
U1 and U2. Therefore, the constant presheaf fails the gluing axiom
(unless S has only one element, or X is connected so that any locally
constant choice is globally constant). In fact, the sheafification of this
presheaf is exactly the sheaf of locally constant S-valued functions
SX , whose sections on U are those functions f : U → S which
locally are constant (these can glue because on overlaps they agree
automatically if defined to be locally constant). [GQ24]

(6) Discontinuous Functions Presheaf: The presheaf

P (U) = {all (not necessarily continuous) functions U → R}

with ordinary restriction maps is actually a sheaf.
To see why, recall that for P to be a sheaf, it must satisfy both

the locality (uniqueness) and gluing axioms. Consider an open cover
{Ui} of some open set U . If we have sections fi ∈ P (Ui) that agree
on all overlaps Ui ∩ Uj , then we can define a function f on U by
setting f(x) = fi(x) whenever x ∈ Ui. This is well-defined precisely
because the sections agree on overlaps. This function f is an element
of P (U) since P allows all functions, not just continuous ones, and
f restricts to each fi on Ui.

The locality axiom is also satisfied: if f, g ∈ P (U) restrict to the
same function on each Ui of an open cover, then f and g must be
identical on U , as they agree at each point.

This example relates to example (1) in that it can be viewed as
the sheaf of continuous functions where R is given the indiscrete
topology, which makes every function continuous by definition.

Intuitively, a sheaf formalizes the principle that compatible local data de-
termine a unique global object.

Just as we defined morphisms of presheaves, we have:

Definition 3.3 (Morphisms of Sheaves). A morphism of sheaves φ : F → G
on X is simply a morphism of the underlying presheaves (Definition 2.3). In
other words, a family of maps {φU : F(U) → G(U)}U⊆X commuting with
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all restriction maps. Sheaves on X and their morphisms form the category
of sheaves on X, denoted Sh(X).

A morphism φ : F → G is an isomorphism (or sheaf isomorphism) if each
φU is bijective. In that case F and G are essentially the same sheaf.

Example 3.4. Basic examples of sheaf morphisms include inclusion maps
or restriction of structure: e.g. the inclusion of the sheaf of differentiable
functions into the sheaf of continuous functions C∞

X ↪→ C0
X (each smooth

function is in particular continuous) is a morphism of sheaves. Another
example is differentiation: on a smooth manifold X, the assignment d :
C∞
X (U) → Ω1

X(U) given by f 7→ df (the exterior derivative) defines a mor-
phism of sheaves from the sheaf of smooth functions to the sheaf of 1-forms,
since d(f |V ) = (df)|V for all V ⊆ U (differentiation commutes with restric-
tion).

Definition 3.5 (Exact Sequences of Sheaves). Given a sequence of sheaf

morphisms 0 → F ′ α−→ F β−→ G → 0, we say it is exact if:

• α is a monomorphism of sheaves (i.e., αU is injective for all open
sets U)

• β is an epimorphism of sheaves (which is a weaker condition than
being surjective on all sets of sections; it only requires β to be locally
surjective)

• The image of α equals the kernel of β (i.e., F ′ is identified as the
kernel subsheaf of β)

Exact sequences of sheaves are fundamental when we define cohomology,
since applying the global section functor Γ(X,−) to an exact sequence of
sheaves generally produces a left exact sequence of groups, and the right-end
failure of exactness leads to cohomology groups (see §6). We note here that
the category of sheaves of abelian groups on X is an abelian category:
it has a zero object (the sheaf 0 with 0(U) = {0} for all U), all kernels
and cokernels exist, and all monomorphisms and epimorphisms are normal.
In fact, one can show that if F and G are sheaves of abelian groups, then
ker(β) defined as the presheaf U 7→ ker(βU : F(U) → G(U)) is actually
a sheaf (since the sheaf axioms can be checked to hold for kernels, being a
sub-presheaf of F). However, coker(α) defined by U 7→ (αU ) is generally not
a sheaf but only a presheaf; to get the cokernel in the category of sheaves,
one must sheafify this presheaf. Thus Sh(X,Ab) (the category of sheaves of
abelian groups onX) is abelian. Moreover, Sh(X,Ab) has enough injectives
(we will discuss this in §6.3), meaning any sheaf can be embedded in an
injective sheaf. These facts allow us to do homological algebra with sheaves.

4. Stalks and the Étale Space

A key feature of sheaves is their ability to encode both local and global
information seamlessly. The notion of a stalk of a sheaf formalizes the idea
of “germs of sections” at a point – capturing the infinitesimal or very local
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behavior of sections. By examining stalks, we can often reduce questions
about sheaves to simpler questions about these local germs.

Definition 4.1 (Stalk and Germ). Let F be a presheaf (or sheaf) on X,
and let x ∈ X be a point. The stalk of F at x, denoted Fx, is defined
as the direct limit (or colimit) of the sets F (U) as U ranges over all open
neighborhoods of x:

Fx := lim−→
U∋x

F(U).

Concretely, an element of Fx is an equivalence class of pairs (U, s) where
U is an open neighborhood of x and s ∈ F(U) is a section defined on U .
[Vak24] Two pairs (U, s) and (V, t) are considered equivalent if there exists
an open neighborhood W ⊆ U ∩ V of x such that s|W = t|W in F(W ).
An equivalence class of such pairs is called a germ of a section at x, often
denoted by [s]x or simply sx. We write germx(s) ∈ Fx for the germ of s at x.
There are natural projection maps ρU,x : F(U) → Fx sending s 7→ [s]x. By
construction, if x ∈ V ⊆ U , then ρV,x(s|V ) = ρU,x(s), ensuring consistency.

The stalk Fx can be thought of as “the set of all values that sections of
F take at x, up to identifying two sections that agree in some neighborhood
of x”. If F is a sheaf of, say, abelian groups or rings, then each stalk Fx

naturally inherits the structure of an abelian group or ring (since direct
limits preserve such structures): operations are defined on representatives
and checked to be well-defined.

Theorem 4.2 (Exactness on Stalks). A sequence of sheaves is exact if and
only if it induces an exact sequence on every stalk. That is, a sequence

0 → F ′ α−→ F β−→ G → 0

is exact if and only if for every point x ∈ X, the induced sequence on stalks

0 → F ′
x

αx−−→ Fx
βx−−→ Gx → 0

is exact.

Proof. This follows from the fact that many sheaf properties are local and
can be checked on stalks. For injectivity, a morphism of sheaves φ : F → G
is injective (monomorphic) if and only if for every point x ∈ X, the induced
map on stalks φx : Fx → Gx is injective. Similarly, surjectivity of φ can be
checked stalkwise (this requires that every section of G has a local preimage
in F around each point).

For exactness in the middle (i.e., im(α) = ker(β)), we note that taking
stalks commutes with taking kernels and images, so (kerβ)x = ker(βx) and
(imα)x = im(αx). Therefore, im(α) = ker(β) as sheaves if and only if
im(αx) = ker(βx) for all stalks.

Thus, exactness of the sequence of sheaves is equivalent to exactness at
each stalk. □
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This principle often simplifies verification of exactness, as stalk calcula-
tions are typically more straightforward than checking exactness for all open
sets.

The importance of stalks is that many properties of sheaves can be checked
by looking at stalks. For instance, as mentioned, a sheaf morphism φ : F →
G is injective if and only if φx : Fx → Gx is injective for all x. Similarly,
surjectivity and exactness can be checked on stalks (this is because sheaf
conditions localize statements, and direct limits are exact functors in the
category of abelian groups, etc.). In other words, stalks allow one to reduce
global questions to local ones around each point.

Example 4.3. For the sheaf OX of holomorphic functions on a complex
manifold X, the stalk OX,x is the ring of all germs of holomorphic functions
at the point x. This is exactly the local ring of X at x, which in algebraic
geometry or complex analysis is a fundamental object (e.g., OX,x might
be C{z}, the ring of convergent power series, if X = C and x = 0). For
the constant sheaf AX (locally constant functions with value in A), the stalk
AX,x is just A itself for every x, since any germ of a locally constant function
is determined by its constant value on some neighborhood of x.

The process of passing to stalks is sometimes called localization in this
context, by analogy with localizing algebraic objects. The slogan is: Sheaves
are determined by their stalks, and maps of sheaves are determined by their
effect on stalks.

Proposition 4.4 (Sheaf Equality via Stalks). If F is a sheaf and s, t ∈ F(U)
are such that sx = tx in Fx for all x ∈ U (meaning the germs of s and t at
every point of U agree), then s = t in F(U). In other words, a sheaf section
is uniquely determined by all its germs.

Proof. For each x ∈ U , sx = tx implies there is a neighborhood Vx ⊆ U of x
such that s|Vx = t|Vx . The collection {Vx}x∈U forms an open cover of U . By
the sheaf locality axiom, since s and t agree on each Vx in the cover, they
must be equal on U . □

This shows the intuition that a sheaf is a kind of “local object”—knowledge
of it on arbitrarily small neighborhoods (stalks) reconstructs it globally.

Sheaves also have a beautiful geometric interpretation via the notion of
an étalé space (sometimes spelled “étale space”). This is another way to
visualize a sheaf as a topological space mapping down to X:

Definition 4.5 (Étale Space of a Sheaf). Let F be a sheaf on X. The étalé
space of F , denoted E(F) or sometimes just E, is the disjoint union of all
stalks of F :

E(F) =
⊔
x∈X

Fx ,

equipped with a natural topology and a projection map π : E(F) → X
defined by sending each element of Fx to the point x (so π|Fx : Fx → {x} is
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trivial). The topology on E(F) is defined by specifying a basis of open sets:
for each open U ⊆ X and each section s ∈ F(U), define

s̃(U) := { sy ∈ Fy | y ∈ U } ⊆ E(F) ,

the set of germs of s at all points of U . One checks that π(s̃(U)) = U .
The collection of all such s̃(U), for all U and all s ∈ F(U), forms a ba-
sis for a topology on E(F) under which π : E(F) → X becomes a local
homeomorphism (étale map). E(F) is called the étalé (or sheaf ) space of
F .

The topology on E(F) is carefully chosen to establish a precise corre-
spondence between sections of the sheaf F and continuous sections of the
projection map π. Specifically, the basic open sets s̃(U) ensure that sections
of F induce continuous maps σ : U → E(F) defined by σ(x) = sx.

The condition that π : E(F) → X is a local homeomorphism means
every point in E(F) has a neighborhood that is mapped homeomorphically
onto an open set of X. In fact, the sets s̃(U) themselves provide such
neighborhoods: each s̃(U) ⊆ E(F) is homeomorphic (via π) to U . This
local homeomorphism property ensures that the local nature of a section
s guarantees that its corresponding map σ is continuous. This is why this
construction is called “étale” (French for roughly spread out flat): the sheaf
is realized as a covering-like space over X.

The sheaf axioms have natural interpretations in this topology:

• The locality axiom ensures that sections are uniquely determined by
their germs, which corresponds to section maps σ : U → E(F) being
uniquely determined by their values.

• The gluing axiom ensures that locally compatible sections can be
glued together, which corresponds to local section maps that agree
on overlaps being able to be glued into a continuous global section
map.

Intuitively, the étalé space is like taking each possible germ as an actual
point lying over the original base space. For example, for the sheaf C0

X of
continuous real functions, it’s important to note that E(C0

X) is not simply
X ×R as one might naively think. Although the space of sections of X ×R
is the sheaf of continuous functions, the projection from X ×R to X is not
a local homeomorphism, which is a required property of étalé spaces. The
correct étalé space for continuous functions has a more complex structure
that does satisfy the local homeomorphism condition. If we instead took the
sheaf of locally constant R-valued functions, its étalé space would be X ×R
with the discrete topology on R, which is a covering space of X. Thus
covering spaces correspond to sheaves that are locally constant. In general,
an étalé space can be seen as a sort of “variable set” varying continuously
over X.

Every section s ∈ F(U) corresponds to a continuous map (actually a
section in the topological sense) σ : U → E(F) of the étalé space, defined
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by σ(x) = sx (the germ of s at x). The condition that s is a sheaf section
exactly ensures that σ is continuous and π◦σ = idU . Thus there is a natural
bijection:

F(U) ∼= {continuous sections σ : U → E(F) of π} ,
valid for every open U ⊆ X. In other words, giving a sheaf F is equivalent

to giving a local homeomorphism π : E → X (where E is the étalé space)
together with this correspondence of sections. In category-theoretic terms,
the functor F 7→ E(F) establishes an equivalence between the category of
sheaves onX and the category of étalé spaces overX (local homeomorphisms
to X). We will not prove this formally here, but it is a beautiful perspective.

Remark 4.6. The étalé space perspective allows one to think of a sheaf as a
kind of “spread-out function or object”. For instance, one can visualize the
sheaf of germs of a function as literally taking each point of X and attaching
all possible germ values at that point as a fiber. If F is a sheaf of sets, E(F)
is like a topological bundle (not necessarily with a single fiber type). If F is
a sheaf of groups or rings, each stalk Fx has that algebraic structure, and
one can often turn E(F) into a topological group (but caution: generally
it’s only a space fibered in groups, not a group globally unless something
like a trivialization exists).

The étalé space construction also provides an alternative way to construct
the sheafification of a presheaf, as we will see next.

5. Sheafification

Not every presheaf is a sheaf (as we saw). However, an important fact
is that for any presheaf, there is a best possible approximation of it by a
sheaf, called its sheafification. Sheafification is analogous to, say, group
completion or abelianization: it’s a functor that makes a presheaf into a
sheaf in a universal way.

Theorem 5.1 (Existence of Sheafification). For any presheaf P on X, there
exists a sheaf P+ on X together with a morphism of presheaves η : P →
P+ satisfying the following universal property: for any sheaf F on X and
any presheaf morphism ϕ : P → F , there exists a unique sheaf morphism
ϕ+ : P+ → F such that ϕ = ϕ+ ◦ η. [GQ24] In categorical terms, P+

is the sheafification of P , and the functor P 7→ P+ is left adjoint to the
inclusion functor from sheaves to presheaves. Moreover, P+ is unique up to
isomorphism by this universal property.

In simpler terms, P+ is a sheaf containing P as a sub-presheaf (via η),
and any attempt to map P into a sheaf factors uniquely through P+. It’s
important to note that the natural map η : P (U) → P+(U) is not necessarily
injective for all U . Nevertheless, P+ is the “smallest” sheaf that contains
P in a suitable sense. If P is already a sheaf, then P+ ∼= P (sheafification
doesn’t change a sheaf).
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There are several ways to explicitly construct P+. We describe a common
construction via stalks and germs:

Let P be a presheaf. Define a candidate for sections of P+ over an open
set U as:

P+(U) := { s : U →
⊔
x∈U

Px | s(x) ∈ Px for each x, and s is “locally a germ of a single section of P” } .

In other words, an element of P+(U) is like a section of the étalé space
of P over U , where now P need not be a sheaf so we consider all germs
in each stalk Px. Formally, one can define P+(U) as the set of functions s
assigning to each x ∈ U a germ sx ∈ Px such that for each x ∈ U , there
exists a neighborhood V ⊆ U of x and some section t ∈ P (V ) whose germ
at every point y ∈ V equals sy. In other words, s is locally (around every
point) coming from an actual presheaf section. Such an s is essentially a
section of the étalé space of P that is continuous in the sense of the basis
given by germs. We define restriction of such an s to a smaller open W ⊆ U
in the obvious way: (s|W )(x) = s(x) for x ∈ W . This indeed defines a sheaf
P+ (one must check the sheaf axioms, which follow from the construction).
By construction, there’s a natural presheaf morphism η : P → P+ sending
each section t ∈ P (U) to the section of P+ given by x 7→ germ of t at x.
The fact that P+ satisfies the universal property of sheafification is a bit
technical but essentially stems from the fact that any map out of P into a
sheaf factors through maps on germs.

Another (equivalent) perspective: The above construction is reminiscent
of first forming the étalé space E(P ) =

⊔
x Px (which is a set of germs) and

then taking sections in the topological sense. Essentially, P+ is the sheaf
of continuous sections of the étalé space of P . This is sometimes called
the étalé sheafification. There is also a more algebraic description: one can
first force the identity axiom (separation) by quotienting P by the relation
identifying sections that agree on an open cover, and then force the gluing
axiom by an additional colimit construction. But the stalk/germ method is
more intuitive.

Example 5.2. Consider again the constant presheaf P with P (U) = S for
all U . Its stalk at any x is

Px = lim−→
U∋x

S = S,

since any germ is represented by an element of S on some neighborhood.
The sheafification P+ is the sheaf of locally constant functions with values
in S. Indeed, an element of P+(U) is by definition a choice of a germ in S at
each x ∈ U which locally comes from a single presheaf section. But presheaf
sections of P are just constant functions on U (since P (V ) = S for any V ).
So the condition that s(x) is locally a germ of a single section means: for
each x there is a neighborhood V of x and an element a ∈ S such that for
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all y ∈ V , s(y) is the germ of the constant section a. But the germ of the
constant section a at y is just a itself. So s(y) = a for all y in V . Thus s
is a locally constant function U → S. Hence P+(U) can be identified with
{f : U → S | f is locally constant}. This is exactly the usual constant sheaf
SX (the sheaf of locally constant S-valued functions). Therefore SX is the
sheafification of the constant presheaf P . We saw earlier that P was not a
sheaf unless S is trivial or X connected, but SX is a genuine sheaf. The
map η : P (U) = S → P+(U) sends the single value a ∈ S to the constant
function f(y) = a on U . This clearly satisfies the universal property: any
sheaf receiving a map from P (i.e. giving an element of S for each open
in a compatible way) must factor through SX (which picks out the locally
constant function determined by those chosen values).

Remark 5.3 (Functoriality of Sheafification). The sheafification functor
(·)+ is functorial: a presheaf morphism ϕ : P → Q induces a sheaf morphism
ϕ+ : P+ → Q+. Functoriality follows naturally by defining ϕ+ pointwise:
given a germ [s]x ∈ (P+)x, we set

ϕ+([s]x) = [ϕ(s)]x,

ensuring compatibility with restrictions. This functoriality means that sheafi-
fication is a functor left adjoint to the inclusion of sheaves into presheaves.
Sheafification also commutes with taking stalks: (P+)x ∼= Px for each x.
This is intuitive since the stalk is already a very local object, the sheaf
axioms don’t change the germs at a single point.

Having established the basic theory of sheaves (definitions, examples,
morphisms, stalks, sheafification), we have the machinery needed to study
sheaf cohomology. We have hinted that sheaf cohomology arises from the
failure of the sequence

0 → F (U) →
∏
i

F (Ui) ⇒
∏
i,j

F (Ui ∩ Uj) → · · ·

to be exact beyond the first term. In fact, continuing this sequence leads to
the Čech cohomology of a sheaf. We will now introduce cohomology both
from the elementary Čech viewpoint and the more general derived-functor
viewpoint, then relate them and discuss key properties and examples.

6. Sheaf Cohomology

One of the main motivations for introducing sheaves is that they allow the
definition of sheaf cohomology, which measures the extent to which the
process of forming global sections fails to be exact. Cohomology provides
obstructions to gluing local data and is an invariant that connects algebraic
topology with algebraic geometry and analysis.
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6.1. Motivation: Cohomology as an Obstruction. Consider a sheaf F
of abelian groups onX (the abelian condition is needed to have a cohomology
theory in the usual sense). We have the exact sequence for any open cover
{Ui} of an open U :

0 → F(U) →
∏
i

F(Ui) →
∏
i<j

F(Ui ∩ Uj) → · · · .

The sheaf axioms tell us that the first arrow is injective (identity axiom) and
the kernel of the second arrow equals the image of the first (sections that
agree on overlaps come from a global section; gluing axiom). However, the
second arrow

∏
iF(Ui) →

∏
i<j F(Ui∩Uj) need not be surjective in general;

if it isn’t, that means there is a collection of sections {tij ∈ F(Ui ∩ Uj)}
that are pairwise compatible on triple overlaps, but which do not come as
differences of a bunch of sections {si ∈ F(Ui)}. In other words, there is an
obstruction to finding local sections si that realize given overlap data tij .

This obstruction is measured by the Čech cohomology group Ȟ1({Ui},F)
for that cover. More generally, the continued failure of exactness at higher
stages leads to higher cohomology groups Ȟp({Ui},F).

Thus, cohomology arises as soon as we have a nontrivial cycle of data
that is not a boundary of something from a previous stage. For sheaves,
Ȟ0 is just global sections, and Ȟ1 detects the obstruction to gluing sections
(this often corresponds to torsors or twisting of objects; e.g. line bundles
are classified by H1 of the sheaf of invertible functions). Higher Hp can
similarly be interpreted (though such interpretations get more abstract).

One can also motivate sheaf cohomology via more classical cohomology
theories. For example, singular cohomology of a space X can be recovered
as sheaf cohomology of the constant sheaf ZX (under mild conditions on
X). Sheaf cohomology provides a unified framework that encompasses many
classical cohomology theories. In particular, the de Rham cohomology on a
smooth manifold M is isomorphic to the sheaf cohomology of the de Rham
complex Ω•:

H∗
dR(M) ∼= H∗(M,Ω•).

Sheaf cohomology is extremely general: it works for any sheaf of abelian
groups on any topological space, and in algebraic geometry one uses it for
the Zariski or étale topology, etc., where other tools are not readily available.

Sheaf cohomology measures the failure of local data to determine global
data exactly. Next, we define the two main approaches to sheaf cohomology:
Čech cohomology and derived functor cohomology.

6.2. Čech Cohomology. Let F be a sheaf of abelian groups on X. Choose
an open cover U = {Ui}i∈I of X. The Čech complex of F with respect to
this cover is the cochain complex:

Cp(U,F) :=
∏

i0,i1,...,ip∈I
F(Ui0 ∩ Ui1 ∩ · · · ∩ Uip) ,
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the product of sections on all (p+1)-fold intersections of the cover sets. An
element of Cp(U,F) can be thought of as an assignment of a section on each
p-fold intersection Ui0...ip := Ui0 ∩ · · · ∩ Uip . In low degrees:

• C0(U,F) =
∏

iF(Ui), a 0-cochain is a choice of section si ∈ F(Ui)
for each i (an open set in the cover).

• C1(U,F) =
∏

i,j F(Ui ∩ Uj), a 1-cochain is a choice of section tij ∈
F(Ui ∩ Uj) for each ordered pair (i, j).

• etc.

We define the Čech differential δ : Cp → Cp+1 by an alternating sum
that is analogous to the simplicial cohomology differential: For a p-cochain
c = {ci0...ip} (where ci0...ip ∈ F(Ui0...ip)),

(δc)i0i1...ip+1 =

p+1∑
k=0

(−1)k ci0...îk...ip+1

∣∣
Ui0...ip+1

.

Here the hat indicates omission of that index, and the restriction |Ui0...ip+1

means we restrict the section from a p-fold intersection down to the (p+1)-
fold intersection that is contained in it. This formula is the usual alternating
sum but with the important aspect that we must restrict each term to the
common intersection Ui0...ip+1 in order to subtract sections living on the
same domain.

One checks that δ2 = 0 (this relies on the presheaf condition for F ,
essentially) so (C•(U,F), δ) is a cochain complex. Here, C•(U,F) denotes
the collection of all Cp(U,F) for all p ≥ 0, where the superscript bullet (•)
is a standard notation indicating the entire complex of cochain groups in all
degrees. The cohomology of this complex,

Ȟp(U,F) := Hp(C•(U,F)) = ker(δ : Cp → Cp+1)/im(δ : Cp−1 → Cp) ,

is called the Čech cohomology of F with respect to the cover U. It
is a priori a cover-dependent notion. For example, Ȟ0(U,F) is

ker(δ : C0 → C1) = {(si) ∈
∏
i

F(Ui) | si|Ui∩Uj = sj |Ui∩Uj ∀i, j} ,

which by the sheaf gluing axiom is isomorphic to F(X) (the global sections).
So Ȟ0(U,F) ∼= F(X) for any cover U. Meanwhile, a 1-cocycle is a collection
(tij) with tij ∈ F(Ui ∩ Uj) such that δ(t)ijk = 0, which explicitly means

tjk − tik + tij = 0 in F(Uijk)

for all i, j, k. This is precisely the condition that {tij} is a compatible family
on triple overlaps. Such a {tij} is called a 1-cocycle. It is a coboundary
(1-coboundary) if tij = si|Uij − sj |Uij for some sections si ∈ F(Ui). Thus

Ȟ1(U,F) consists of equivalence classes of 1-cocycles under those trivialized
by 0-cochains. This matches the description of gluing obstructions earlier.
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If we refine the cover (take a cover V that is a refinement of U), there are
natural restriction maps

Ȟp(U,F) → Ȟp(V,F)

that induce an inverse system. One then defines the Čech cohomology of
F on X (with no cover specified) as the direct limit over all open covers:

Ȟp(X,F) := lim−→
U

Ȟp(U,F) .

[Rot09]
In many nice situations, a single good cover yields the same cohomology as

the direct limit (for example, ifX is a paracompact space, any open cover has
a refinement which is uniformly fine enough that further refinement doesn’t
change the cohomology). In the context of manifolds or CW complexes, one
often works with a good cover (e.g. all intersections are contractible) which
simplifies computations.

We note a couple of important facts:

• For a sheaf of abelian groups, Ȟp(X,F) is functorial in F : a sheaf
morphism F → G induces maps on cochains and hence on coho-
mology. So cohomology is a functor Hp : Sh(X,Ab) → Ab (from
sheaves to abelian groups).

• If X is a reasonably nice space (e.g. paracompact Hausdorff), then
Čech cohomology for sheaves is isomorphic to the sheaf cohomology
defined via derived functors (discussed next), which is the more gen-
eral definition. For paracompact Hausdorff spaces, this isomorphism
is typically proven via a spectral sequence argument, often using the
Godement resolution, which relates the two cohomology theories.
However, for pathological spaces or sheaves, Čech cohomology might
differ from derived functor cohomology (Grothendieck famously gave
conditions when they agree and when they might not). In algebraic
geometry, one often can use Čech cohomology computed with affine
open covers since higher cohomology vanishes on affines.

• Čech cohomology can be used to derive long exact sequences: given
a short exact sequence of sheaves 0 → F ′ → F → F ′′ → 0, one
can construct a long exact sequence in Čech cohomology · · · →
Ȟp(X,F ′) → Ȟp(X,F) → Ȟp(X,F ′′) → Ȟp+1(X,F ′) → · · · (the
connecting homomorphism comes from a cocycle construction). Un-
der conditions where Čech agrees with derived functor cohomology,
this is the same long exact sequence we get from derived functors.

6.3. Derived Functor Definition. A more abstract (but powerful) ap-
proach to sheaf cohomology is via derived functors. The key observation
is that the global section functor Γ(X,−) : Sh(X,Ab) → Ab (which takes
a sheaf F to F(X)) is a left-exact functor between abelian categories. In-
deed, 0 → F ′ → F → F ′′ → 0 exact implies 0 → Γ(X,F ′) → Γ(X,F) →
Γ(X,F ′′) is exact, since taking global sections is just evaluating at an open
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(and exactness at that first stage is precisely sheaf locality for X itself,
which holds). However, Γ(X,−) is not in general right-exact; the image of
Γ(X,F) → Γ(X,F ′′) might not equal Γ(X,F ′′) if not every local section of
F ′′ lifts globally in F . That failure is exactly measured by higher derived
functors.

Because Sh(X,Ab) is an abelian category with enough injectives, we can
take an injective resolution of any sheaf. If F is a sheaf, choose an injective
resolution:

0 → F → I0 → I1 → I2 → · · ·
with each Ip injective (such resolutions exist because sheaves have enough
injectives). Now apply the functor Γ(X,−) to this complex. Γ(X, Ip) is an
abelian group, and since Ip is injective, Γ(X, Ip) is an exact functor of F (so
higher cohomology of an injective is zero). We obtain a cochain complex:

0 → Γ(X, I0) → Γ(X, I1) → Γ(X, I2) → · · · ,

whose cohomology groups are by definition the sheaf cohomology groups:

Hp(X,F) := Hp(Γ(X, I•)) .

[GQ24]
These are the right derived functors RpΓ(X,F). By general homological

algebra, this definition is independent of the choice of injective resolution
and satisfies the usual properties: for instance, it gives a long exact cohomol-
ogy sequence for any short exact sequence of sheaves (since one can splice
resolutions or apply the snake lemma to the double complex formed by two
resolutions, etc.). Moreover, one shows that H0(X,F) ∼= Γ(X,F) (because
Γ(X,−) is left exact, so H0 yields its value), and for an injective sheaf I,
Hp(X, I) = 0 for p > 0.

Hp(X,F) = RpΓ(X,F)

is the pth right derived functor of global sections. This definition is elegant
and conceptual, and it coincides with Čech cohomology for sufficiently nice
spaces (in fact, always there is a canonical map Ȟp(X,F) → Hp(X,F) that
is an isomorphism if F is what is known as a flasque or soft or other acyclic
sheaf or if X is paracompact, etc.).

A concrete way to compute sheaf cohomology using derived functors is to
use a resolution by acyclic sheaves (ones whose higher cohomology vanishes).
For example, flasque sheaves are those L such that L(X) → L(U) is
surjective for all open U ; they are soft and satisfy Hp(X,L) = 0 for all p > 0
(since one can always extend local sections to global sections, which implies
any Čech cocycle is a coboundary). Every sheaf has a flasque resolution,
so one can compute cohomology as the cohomology of the global section
complex of a flasque resolution (this is another approach to showing existence
of Hp). This often simplifies computations in practice compared to injective
resolutions (which are abstract).
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The derived functor viewpoint also immediately gives functoriality in the
sheaf argument, long exact sequences, and powerful tools like spectral se-
quences (Leray spectral sequence relates Hp(X,Rqf∗F) to Hp+q(Y,F) for a
continuous map f : Y → X) and base change theorems. It is the standard
approach in advanced texts like Hartshorne’s Algebraic Geometry [Har77]
and Grothendieck’s work [Gro57].

Hp(X,F) is a sequence of abelian groups (or modules) associated to each
sheaf F . They are zero for p < 0, and H0(X,F) = F(X). They are
functorial in F and fit into long exact sequences. They also often coincide
with classical cohomology theories in special cases (e.g., if F = AX for a
constant sheaf A on a reasonably nice space, then Hp(X,A) ∼= Hp

sing(X;A),

the singular cohomology of X with coefficients in A).

6.4. Čech vs. Derived Functor Cohomology. As noted, Čech cohomol-
ogy Ȟp(X,F) is not obviously the same as Hp(X,F) in general, but there
are conditions under which they agree. Typically, if X is paracompact (or
has a basis that is good for covers) and F is a sheaf of abelian groups (or
more specifically a fine sheaf, etc.), then Ȟp ∼= Hp. More concretely, if F is
such that every open cover’s higher Čech cohomology eventually stabilizes
(which is true for paracompact spaces), then one can show any injective
resolution gives the same result, and that result matches the direct limit of
Čech.

In practice, one often uses Čech cohomology to compute sheaf cohomology
because it’s more combinatorial. For example, in complex geometry, to
compute Hp(X,OX) (cohomology of the structure sheaf) one often uses a
cover by affines and computes Čech cohomology since each affine piece has
trivial cohomology and sections on intersections are computable, etc.

Grothendieck showed that if F is a fine sheaf on a paracompact space,
then Hp(X,F) = 0 for all p > 0. [GQ24] A sheaf F is called fine if for
any locally finite open cover {Ui}i∈I of X, there exists a family of sheaf
endomorphisms {ϕi : F → F}i∈I such that:

(1) For each i ∈ I, the support of ϕi is contained in Ui (meaning
ϕi(s)|X\Ui

= 0 for all sections s)
(2)

∑
i∈I ϕi = idF (the identity morphism on F)

This definition generalizes the notion of partitions of unity to the setting
of sheaves. For example, the sheaf of smooth functions or differential forms
on a manifold is fine via the existence of smooth partitions of unity. Fine
sheaves are a subset of flasque sheaves (in fact fine =⇒ flasque), so they are
acyclic. Therefore, e.g. the sheaf of smooth functions C∞

X on a paracompact
manifold has no higher cohomology (Hp(X,C∞

X ) = 0 for p > 0). Similarly,
the sheaf of continuous real functions is fine (if paracompact Hausdorff), so it
has no cohomology above 0. This doesn’t mean the space has no topology;
rather, it means that these sheaves are too flexible to capture interesting
invariants (in contrast, constant sheaves are not fine, and indeed Hp(X,R)
recovers real cohomology of X which can be nonzero).
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One important situation of agreement is for coherent analytic sheaves
on complex manifolds or coherent algebraic sheaves on varieties: in those
contexts, one often uses Čech cohomology with respect to an open cover
by contractible (or affine) sets to compute Hp. For example, on a complex
manifold, Dolbeault’s theorem states Hq(X,Ωp

X) (sheaf cohomology of holo-
morphic p-forms) is isomorphic to the (p, q)th Dolbeault cohomology of the
manifold, which is computed using fine resolutions (the Dolbeault complex
of C∞ forms).

Ȟp(X,F) and Hp(X,F) coincide in most situations of interest, and one
usually denotes them simply as Hp(X,F). We will assume henceforth that
we are working in a context where this is true (e.g. X is paracompact).

6.5. Properties of Sheaf Cohomology. We list some key properties and
theorems of sheaf cohomology (mostly consequences of it being a derived
functor):

• Long Exact Sequence: If 0 → F ′ → F → G → 0 is an exact
sequence of sheaves (of abelian groups), there is a natural long exact
sequence in cohomology:

0 → H0(X,F ′) → H0(X,F) → H0(X,G) δ−→ H1(X,F ′) → H1(X,F) → H1(X,G) → · · · ,

continuing as H1 → H2 and so on. The connecting homomorphism
δ : H0(X,G) → H1(X,F ′) measures the obstruction to lifting a
global section of G to F : given s ∈ G(X), one can locally lift it (by
surjectivity on stalks of F → G) to sections of F , and the difference
of two local lifts defines a Čech 1-cocycle in F ′ whose class is δ(s).
This general mechanism is analogous to how connecting maps in
algebraic cohomology measure extension classes.

• Functoriality: If f : Y → X is a continuous map and F a sheaf on
X, there are two important functors between sheaf categories:
(1) Pullback (inverse image): The pullback sheaf f−1F on Y is

defined as the sheafification of the presheaf that assigns to each
open set V ⊂ Y the direct limit:

(f−1F)pre(V ) = lim−→
U⊃f(V )

F(U)

where the limit is taken over all open sets U ⊂ X containing
f(V ). Intuitively, f−1F is the sheaf on Y that ”pulls back” the
sections of F via f .

(2) Pushforward (direct image): The pushforward sheaf f∗G on
X for a sheaf G on Y is defined by:

(f∗G)(U) = G(f−1(U))

for any open set U ⊂ X. In other words, sections of f∗G over
U are precisely the sections of G over the preimage f−1(U).
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These functors induce maps on cohomology (contravariant for
pullback, covariant for pushforward). In particular, if f : Y → X
is a continuous map of nice spaces, there is the Leray spectral
sequence:

Ep,q
2 = Hp

(
X,Rqf∗G

)
=⇒ Hp+q(Y,G) ,

which relates cohomology of Y to that ofX with higher direct images
of G. As a special case, if f is a covering map (or any map such that
higher direct images vanish), then Hn(Y,G) ∼= Hn(X, f∗G). For
example, if Y is a covering of X with fiber F and G is a locally
constant sheaf on Y , then f∗G is a locally constant sheaf on X with
fiber G(F ), and one recovers that H∗(Y,G) ∼= H∗(X, f∗G) (this is
a sheafified version of the statement that cohomology of the total
space of a covering is cohomology of base with local coefficients).

Another consequence is Base Change: under certain conditions,
for a fiber square with f proper and some conditions on F :

Y ′ g−→ Y

↓f ′ ↓f

X ′ h−→ X

we have h∗Rqf∗F ∼= Rqf ′
∗g

∗F . This is important in algebraic geom-
etry (cohomology and base change theorems).

• Vanishing Theorems: Many conditions ensure vanishing of co-
homology above a certain degree. For example, if X has covering
dimension d (roughly, it can be covered by a finite refinement where
no point is in more than d+1 sets), then Hp(X,F) = 0 for all p > d
for any sheaf F . This is because one can find a cover with nerve of di-
mension d. Specifically, a topological d-sphere Sd has Hp(Sd,Z) = 0
for p > d.

• Relation to Classical Cohomology: If X is a reasonably nice
topological space (say a CW complex) and A is an abelian group,
then Hp(X,AX) ∼= Hp

sing(X;A), the usual singular (or Čech) coho-

mology with coefficients in A. For example, H1(X,Z) classifies cov-
ering spaces of X (as Hom(H1(X),Z) by the Hurewicz isomorphism,
or equivalently Hom(π1(X),Z) if X is nice). Also H1(X,O∗

X) for a
complex manifold X is (by the exponential sheaf sequence) isomor-
phic to H2(X,Z), giving the first Chern class of line bundles (this is
a deep fact bridging analytic and topological cohomology via the ex-

ponential exact sequence of sheaves 0 → 2πiZ → OX
exp−−→ O∗

X → 0).

6.6. Examples and Applications. We conclude with several illustrative
examples.

Example 6.1 (Sheaf Cohomology of a Circle). LetX = S1 be the circle, and
consider the constant sheaf RX (locally constant real-valued functions). We
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compute Hp(S1,R) using a simple open cover of S1 by two arcs U1, U2 that
overlap in two disconnected segments. Using Čech cohomology: Ȟ0 gives
R (global constant functions). A 1-cocycle is (t12) with t12 ∈ F(U1 ∩ U2)
such that δt = 0 (here δt on triple overlaps is trivial since we have only two
sets). So a 1-cocycle is just a section on U1 ∩ U2 (which has two connected
components corresponding to the two overlaps). The condition to be a
coboundary is that t12 = s1|12−s2|12 for some si on Ui. But since U1∩U2 has
two components, a globally constant function cannot produce an arbitrary
pair of values on those two overlaps unless they are equal. Thus one finds
Ȟ1(S1,R) ∼= R, corresponding to assigning a difference t12 of value a on one
overlap and −a on the other (coming from a sort of discontinuous global
section if you try to glue one way around vs the other). In fact, H1(S1,R) ∼=
Hom(π1(S

1),R) ∼= R, which matches singular cohomology H1(S1,R) ∼= R.
All higher Hp = 0 for p > 1 because S1 has topological dimension 1.

Sheaf cohomology is thus a unifying language: singular cohomology, de
Rham cohomology, etc., all fit into the framework by choosing appropriate
sheaves (constant sheaf, differential forms sheaf, etc.). It also provides new
invariants like the cohomology of structure sheaves in algebraic geometry
(leading to definitions of irregularity, geometric genus, etc.). In algebraic
topology, one rarely explicitly speaks of sheaf cohomology except to use
local coefficient systems; however, in modern geometry and number theory,
sheaf cohomology is indispensable.

Exercise 6.2. Compute Hp(X,Z) for X = Sn (the n-sphere) for various
p. You can use a good cover of Sn by two contractible open sets whose
intersection is homotopy equivalent to Sn−1. (This should recover the known
singular cohomology of spheres.)

Exercise 6.3. Show that if F is a flasque sheaf onX, thenHp(X,F) = 0 for
all p > 0. (Hint: For any open cover, every Čech p-cocycle is a coboundary
because you can successively extend sections. Alternately, use the fact that
F surjects onto any section on an open set to build a contracting homotopy
for the Čech complex.)

Exercise 6.4. Consider the short exact sequence of sheaves on a manifold
X:

0 → ZX → RX → R/ZX → 0,

where R/ZX is the locally constant sheaf with fiber R/Z ∼= S1. Show that
this induces the long exact sequence in cohomology that is isomorphic to
the integral cohomology Bockstein sequence:

· · · → Hp(X,R/Z) δ−→ Hp+1(X,Z) → Hp+1(X,R) → · · · .
Conclude thatHp(X,R/Z) is isomorphic to the torsion subgroup ofHp+1(X,Z)
(primary decomposition of integral cohomology).

Sheaf cohomology provides a powerful and general way to handle coho-
mological questions across topology, geometry, and algebra. It formalizes
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the passage from local to global and measures the obstructions encountered.
The theory is rich with algebraic tools (spectral sequences, etc.) and geo-
metric interpretations (via examples like line bundles, divisor class groups,
etc.).
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