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1 Fundamental Definitions

Before diving into the main results, we establish some fundamental definitions that will be used
throughout this work.1

1This expository paper was written after a summer MAT599 course with Dr. Bill Chin (DePaul) on Commutative
Algebra and Algebraic Geometry. Additionally, thanks to Dr. Nicholas Ramsey (DePaul) for informally mentoring
me during the Fall research assistantship. Lastly, thanks to my friend Drew Melman-Rogers (UChicago) for his
thoughtful comments on the original draft and for guiding me this summer.
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Definition 1.1 (Noetherian Ring). A commutative ring R is called Noetherian if every ideal of R
is finitely generated. Equivalently, R is Noetherian if and only if every ascending chain of ideals

I1 ⊆ I2 ⊆ I3 ⊆ · · ·

eventually stabilizes, meaning there exists N such that In = IN for all n ≥ N .

Definition 1.2 (Regular Map). Let V and W be varieties over a field K. A regular map (or
morphism) ϕ : V → W is a function that can be represented locally by rational functions with
denominators that don’t vanish. More precisely, for each point p ∈ V , there exists an open neigh-
borhood U containing p and rational functions f1, . . . , fn ∈ K(V ) that are defined at all points of
U such that

ϕ|U (x) = (f1(x), . . . , fn(x))

for all x ∈ U .

Definition 1.3 (Polynomial Map). Let V ⊆ An and W ⊆ Am be affine varieties. A polynomial
map ϕ : V →W is a function of the form

ϕ(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fm(x1, . . . , xn))

where each fi ∈ K[x1, . . . , xn], such that ϕ(V ) ⊆ W . Every polynomial map is regular, but not
every regular map is polynomial.

2 Varieties and Algebraic Sets

Definition 2.1 (Affine Algebraic Set). Let K be an algebraically closed field. An algebraic set in
An
K is a subset V ⊆ An

K of the form

V = V (I) = {x ∈ An
K : f(x) = 0 for all f ∈ I}

where I is an ideal in K[x1, . . . , xn].

Definition 2.2 (Affine Variety). An affine variety is an irreducible algebraic set, i.e., an algebraic
set that cannot be written as the union of two proper algebraic subsets.

3 Hilbert’s Basis Theorem

Theorem 3.1 (Hilbert’s Basis Theorem). If R is a Noetherian ring, then R[X] is Noetherian.
Consequently, if K is a field, then K[X1, . . . , Xn] is Noetherian.

Proof. Let I be an ideal in R[X]. For f ∈ R[X], we denote by lt(f) the leading term of f and by
lc(f) the leading coefficient of f .

For any ideal I ⊆ R[X] and d ≥ 0, define:

Ld(I) = {0} ∪ {lc(f) : f ∈ I with deg(f) = d}

Lemma 3.2 (Ideal Property). For each d ≥ 0, Ld(I) is an ideal in R.

Proof. Let a, b ∈ Ld(I). If either is 0, clearly a+ b ∈ Ld(I). Otherwise, let f, g ∈ I with lc(f) = a
and lc(g) = b. Consider h = f + g. Either deg(h) < d or lc(h) = a+ b, so a+ b ∈ Ld(I).

For r ∈ R and a ∈ Ld(I), if a = 0 then ra = 0 ∈ Ld(I). Otherwise, let f ∈ I with lc(f) = a.
Then rf has leading coefficient ra, so ra ∈ Ld(I).
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Lemma 3.3 (Stabilization). The ascending chain of ideals

L0(I) ⊆ L0(I) + L1(I) ⊆ L0(I) + L1(I) + L2(I) ⊆ · · ·

stabilizes, as R is Noetherian.

Since R is Noetherian, there exists N ≥ 0 such that:

L0(I) + · · ·+ LN (I) = L0(I) + · · ·+ LN (I) + LN+k(I)

for all k ≥ 0.
For each d ≤ N , since R is Noetherian, Ld(I) is finitely generated. Let {ad1, . . . , adrd} generate

Ld(I). For each adi, choose fdi ∈ I with lc(fdi) = adi and deg(fdi) = d.
Let F be the finite set of all chosen fdi, and let J = ⟨F ⟩ be the ideal generated by F in R[X].

Lemma 3.4 (Key Reduction). For any g ∈ I, there exists g′ ∈ I such that:

• g − g′ ∈ J

• Either g′ = 0 or deg(g′) < deg(g)

The proof follows by considering cases based on whether deg(g) ≤ N or deg(g) > N and using
the properties of the leading term ideals we constructed.

Finally, we can show I = J . Clearly J ⊆ I as F ⊆ I. For the reverse inclusion, let g ∈ I. We
use induction on deg(g). If g = 0, clearly g ∈ J . Otherwise, by the Key Reduction Lemma, find g′

with g − g′ ∈ J and deg(g′) < deg(g). By induction, g′ ∈ J , therefore g = (g − g′) + g′ ∈ J .

4 Noether’s Normalization Lemma

Theorem 4.1 (Noether’s Normalization Lemma). Let A be a finitely generated K-algebra, where
K is a field. Then there exist elements y1, . . . , yd ∈ A that are algebraically independent over K
such that A is integral over K[y1, . . . , yd].

Proof.

Lemma 4.2 (Reduction to Standard Form). It suffices to prove the theorem for A = K[x1, . . . , xn]/I
where I is an ideal in K[x1, . . . , xn].

Proof. Since A is finitely generated over K, we can write A = K[a1, . . . , an] for some elements
a1, . . . , an ∈ A. Define a surjective homomorphism ϕ : K[X1, . . . , Xn] → A by ϕ(Xi) = ai. Let
I = ker(ϕ). Then A ∼= K[X1, . . . , Xn]/I.

Lemma 4.3 (Base Case). The theorem holds for n = 1.

Proof. For n = 1, A = K[x]/(f) for some polynomial f . If f = 0, then A ∼= K[x] and we take
d = 1, y1 = x. If f ̸= 0, then A is finite-dimensional over K and we take d = 0.

Lemma 4.4 (Polynomial Separation). Let f ∈ K[X1, . . . , Xn] be non-zero. After a suitable linear
change of variables, f becomes monic in Xn.
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Proof. Write f =
∑

α cαX
α where α ranges over multi-indices. Consider the transformation:

X ′
i = Xi + λiXn for i < n

X ′
n = Xn

Under this transformation, the coefficient of the highest power of Xn is a non-zero polynomial in
λ1, . . . , λn−1. Choose values making this coefficient non-zero, then divide by it.

Now we proceed by induction on n. Assume the theorem holds for algebras generated by fewer
than n elements.

If x1, . . . , xn are algebraically independent mod I, we’re done. Otherwise, there exists a non-zero
polynomial f ∈ I. By the Polynomial Separation Lemma, after a linear change of variables:

f = Xd
n + a1X

d−1
n + · · ·+ ad

where ai ∈ K[X1, . . . , Xn−1].
Define new variables:

yi = Xi +Xi
n for 1 ≤ i ≤ n− 1

Lemma 4.5 (Key Property). The map K[y1, . . . , yn−1] → K[X1, . . . , Xn]/I is injective.

Proof. The transformation (X1, . . . , Xn−1) 7→ (y1, . . . , yn−1) is triangular with determinant 1. If
g(y1, . . . , yn−1) = 0 mod I, substitute the expressions for yi. The highest degree terms in Xn

cannot cancel unless g = 0.

Lemma 4.6 (Integrality). Xn is integral over K[y1, . . . , yn−1] modulo I.

Proof. Recall that after our change of coordinates, f ∈ I has the form

f = Xd
n + a1X

d−1
n + · · ·+ ad

where ai ∈ K[X1, . . . , Xn−1], and we defined

yi = Xi +Xi
n for 1 ≤ i ≤ n− 1

Solving for each Xi gives:

Xi = yi −Xi
n for 1 ≤ i ≤ n− 1

Now substitute these expressions into the coefficients ai of f . Each ai is a polynomial in the
Xj ’s, so after substitution we get:

ai = bi(y1, . . . , yn−1, Xn)

where each bi is a polynomial in the yj ’s and Xn.
Therefore, modulo I, Xn satisfies:

Xd
n + b1(y1, . . . , yn−1, Xn)X

d−1
n + · · ·+ bd(y1, . . . , yn−1, Xn) = 0

Let D be larger than both d and the degree of Xn in any bi. Group terms by powers of Xn

up to degree D. The coefficient of each power Xk
n will be a polynomial in y1, . . . , yn−1. Thus we

obtain a monic polynomial equation for Xn with coefficients in K[y1, . . . , yn−1], showing that Xn

is integral over K[y1, . . . , yn−1] modulo I.
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Completion of Proof of Noether’s Normalization. Having established the integrality ofXn overK[y1, . . . , yn−1]
modulo I, we complete the proof as follows:

1. By the Key Property proved earlier, K[y1, . . . , yn−1] embeds in A = K[X1, . . . , Xn]/I.

2. Apply the inductive hypothesis to K[y1, . . . , yn−1] (which has n − 1 generators). This gives
us algebraically independent elements z1, . . . , zd ∈ K[y1, . . . , yn−1] such that y1, . . . , yn−1 are
integral over K[z1, . . . , zd].

3. Now we show each Xi is integral over K[y1, . . . , yn−1]:

• For each i < n, we have Xi = yi −Xi
n

• Xn is integral over K[y1, . . . , yn−1] by the Integrality Lemma

• Therefore each Xi is integral over K[y1, . . . , yn−1] (as a sum/difference of integral ele-
ments)

4. We can now conclude:

• X1, . . . , Xn are integral over K[y1, . . . , yn−1]

• y1, . . . , yn−1 are integral over K[z1, . . . , zd]

• By transitivity of integrality, X1, . . . , Xn are integral over K[z1, . . . , zd]

• Therefore A = K[X1, . . . , Xn]/I is integral over K[z1, . . . , zd]

5. The elements z1, . . . , zd remain algebraically independent in A because:

• They are algebraically independent in K[y1, . . . , yn−1]

• K[y1, . . . , yn−1] embeds in A by the Key Property

Thus we have found algebraically independent elements z1, . . . , zd such that A is integral over
K[z1, . . . , zd], completing the proof of Noether’s Normalization Lemma.

Remark 4.7. The proof demonstrates a powerful technique: we first reduce to studying a ring with
fewer generators (via the yi), apply induction to find good elements there (the zi), and then show
these work for our original ring through careful analysis of integrality relations.

Proposition 4.8. The number d obtained in the construction equals the transcendence degree of
A over K.

Proof. Since A is integral over K[z1, . . . , zd]:

trdegK A = trdegK K[z1, . . . , zd] = d

Any set of algebraically independent elements must have size at most trdegK A. Therefore, d is
minimal.

Corollary 4.9 (Geometric Interpretation). For any affine variety V ⊆ An, there exists a finite
surjective morphism V → Ad where d = dimV .
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Proof. Let A = K[V ] be the coordinate ring of V . By Noether’s Normalization, find y1, . . . , yd ∈ A
with A integral over K[y1, . . . , yd]. This gives a finite morphism V → Ad. Surjectivity follows from
the Going-Up theorem.

Theorem 4.10 (Going-Up). Let ϕ : R → S be an integral ring homomorphism of commutative
rings. Let p0 ⊂ p1 ⊂ · · · ⊂ pn be a chain of prime ideals in R, and let q0 ⊂ · · · ⊂ qk be a chain of
prime ideals in S with k < n such that ϕ−1(qi) = pi for i ≤ k. Then the chain in S can be extended
to a chain q0 ⊂ · · · ⊂ qn with ϕ−1(qi) = pi for all i.

Example 4.11. Consider the cusp V (y2 − x3) ⊆ A2. The normalization map:

t 7→ (t2, t3)

exhibits A1 as the normalization of the cusp. This is a concrete instance of Noether Normalization
showing how a singular curve can be parametrized by a line.

5 Hilbert’s Nullstellensatz

Definition 5.1 (Radical of an Ideal). The radical of an ideal I in a commutative ring R, denoted√
I or rad(I), is the set √

I = {x ∈ R : xn ∈ I for some n > 0}

An ideal I is called radical (or semiprime) if I =
√
I.

Theorem 5.2 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field and let I be an
ideal in K[x1, . . . , xn]. Then: √

I = I(V (I))

where I(V (I)) is the ideal of polynomials vanishing on V (I).

Proof. We divide the proof into several stages:

Lemma 5.3 (Weak Nullstellensatz). If K is algebraically closed and I ⊊ K[x1, . . . , xn] is a proper
ideal, then V (I) ̸= ∅.

Proof. By Noether’s Normalization Lemma (after a linear change of coordinates), there exist ele-
ments y1, . . . , yr in K[x1, . . . , xn] such that:

• K[x1, . . . , xn]/I is integral over K[y1, . . . , yr]

• y1, . . . , yr are algebraically independent mod I

Since I is proper, r ≥ 1 (otherwise K[x1, . . . , xn]/I would be integral over K, making it finite-
dimensional and therefore 0-dimensional).

Choose any element a1 ∈ K and define ϕ1 : K[y1] → K by ϕ1(y1) = a1. For i = 2, . . . , r, we
can successively extend ϕi−1 to ϕi : K[y1, . . . , yi] → K by choosing any value ai ∈ K for yi. This
gives a homomorphism ϕ : K[y1, . . . , yr] → K.

By the integrality of K[x1, . . . , xn]/I over K[y1, . . . , yr], for each xi we have an equation:

xmi
i + ci1x

mi−1
i + · · ·+ cimi = 0 mod I

where cij ∈ K[y1, . . . , yr].
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Let bij = ϕ(cij) ∈ K. Since K is algebraically closed, each equation:

Xmi + bi1X
mi−1 + · · ·+ bimi = 0

has a solution αi ∈ K.
The point (α1, . . . , αn) ∈ Kn satisfies all equations in I, hence lies in V (I).

Lemma 5.4 (Rabinowitsch Trick). For any ideal I ⊆ K[x1, . . . , xn] and polynomial f , if f vanishes
on V (I), then

V (I + ⟨1− yf⟩) = ∅

where y is a new variable.

Proof. Suppose for contradiction that (a1, . . . , an, b) ∈ V (I + ⟨1− yf⟩). Then (a1, . . . , an) ∈ V (I),
so f(a1, . . . , an) = 0. But also 1− bf(a1, . . . , an) = 0, implying 1 = 0, a contradiction.

Now we prove the main theorem. Let I be an ideal in K[x1, . . . , xn]. We show
√
I = I(V (I)).

First, let f ∈
√
I. Then there exists m > 0 such that fm ∈ I. For any point p ∈ V (I), all

elements of I vanish at p, so fm(p) = 0. Therefore f(p) = 0, showing f ∈ I(V (I)). This proves√
I ⊆ I(V (I)).
For the reverse inclusion, let f ∈ I(V (I)). Consider the ideal:

J = I + ⟨1− yf⟩ ⊆ K[x1, . . . , xn, y]

By the Rabinowitsch Trick, V (J) = ∅. By theWeak Nullstellensatz, this implies J = K[x1, . . . , xn, y].
Therefore 1 ∈ J , so there exist g ∈ I and h ∈ K[x1, . . . , xn, y] such that:

1 = g + h(1− yf)

Multiply this equation by fm where m = degy(h) + 1:

fm = fmg + fmh(1− yf)

Consider this equation in K[x1, . . . , xn, y]. The right side has degree at most m−1 in y. Setting
y = 1

f (formally) in this equation:
fm = fmg + 0

Therefore fm ∈ I, showing f ∈
√
I. This proves I(V (I)) ⊆

√
I.

Corollary 5.5 (Strong Nullstellensatz, Alternative Form). If K is algebraically closed and I is a
proper ideal of K[x1, . . . , xn], then

I = I(V (I)) ⇐⇒ I is radical

Corollary 5.6 (Ideal-Variety Correspondence). Let K be algebraically closed. There are one-to-one
correspondences:

1. {Points in An
K} ↔ {Maximal ideals in K[x1, . . . , xn]}

2. {Irreducible varieties in An
K} ↔ {Prime ideals in K[x1, . . . , xn]}

3. {Algebraic sets in An
K} ↔ {Radical ideals in K[x1, . . . , xn]}

These correspondences are given by V 7→ I(V ) with inverse I 7→ V (I).

7



Corollary 5.7 (Ideal-Variety Dictionary). For an algebraically closed field K:

1. V (I) = ∅ ⇐⇒ I = K[x1, . . . , xn]

2. V (I) ⊆ V (J) ⇐⇒
√
I ⊇

√
J

3. V (I ∩ J) = V (IJ) = V (I) ∪ V (J)

4. V (
∑

i Ii) =
⋂

i V (Ii)

6 Maximal Spectrum

Definition 6.1 (MaxSpec). For a Noetherian ring R, the maximal spectrum MaxSpec(R) is the
set of all maximal ideals of R equipped with the Zariski topology. The closed sets in this topology
are of the form

V (I) = {m ∈ MaxSpec(R) : I ⊆ m}

where I ranges over the ideals of R.

Theorem 6.2. For a Noetherian ring R, MaxSpec(R) is a compact space.

Proof. Let {Uα}α∈A be an open cover of MaxSpec(R). Each Uα is the complement of some closed
set V (Iα):

Uα = MaxSpec(R) \ V (Iα)

Since these cover MaxSpec(R): ⋃
α∈A

Uα = MaxSpec(R)

Taking complements: ⋂
α∈A

V (Iα) = ∅

This means that no maximal ideal can contain all the Iα. Therefore:∑
α∈A

Iα = R

In particular, 1 ∈
∑

α∈A Iα. Thus there exist elements ri ∈ Iαi for finitely many indices
α1, . . . , αn such that:

1 = r1 + r2 + · · ·+ rn

This means that:
V (Iα1) ∩ V (Iα2) ∩ · · · ∩ V (Iαn) = ∅

Taking complements:
Uα1 ∪ Uα2 ∪ · · · ∪ Uαn = MaxSpec(R)

Therefore, we have found a finite subcover, proving compactness.
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7 Spectrum of a Ring

Definition 7.1 (Spectrum). For a commutative ring R, the spectrum Spec(R) is the set of all
prime ideals of R equipped with the Zariski topology.

Remark 7.2. The commutativity requirement is essential in this definition. For non-commutative
rings, the set of prime ideals may not have a suitable topology to form a spectral space. While
non-commutative generalizations of the spectrum exist in non-commutative geometry, they are
considerably more complex and require different techniques.

Definition 7.3 (Zariski Topology on Spec). The Zariski topology on Spec(R) of a commutative
ring R is defined by taking the closed sets to be of the form

V (I) = {p ∈ Spec(R) : I ⊆ p}

where I ranges over the ideals of R.

Proposition 7.4. For any commutative ring R, Spec(R) with the Zariski topology satisfies:

(a) V (0) = Spec(R) and V (R) = ∅

(b) V (I1) ∪ V (I2) = V (I1I2) = V (I1 ∩ I2)

(c) V (
∑

α Iα) =
⋂

α V (Iα)

Proof. Parts (a) and (c) follow directly from the definitions.
For (b), note that a prime ideal contains I1I2 if and only if it contains either I1 or I2 (by

the prime property). Also, V (I1 ∩ I2) = V (I1I2) since for any ideal K, I1I2 ⊆ K if and only if
I1 ∩ I2 ⊆ K.

Theorem 7.5. For any commutative ring R, Spec(R) is a spectral space, meaning:

1. It is quasi-compact (every open cover has a finite subcover)

2. It is sober (every irreducible closed subset is the closure of a unique point)

3. The quasi-compact open sets form a basis closed under finite intersections

Proof. For quasi-compactness: Let {Ui} be an open cover of Spec(R). Each Ui is the complement
of V (Ii) for some ideal Ii. Then:⋃

i

Ui = Spec(R) =⇒
⋂
i

V (Ii) = ∅ =⇒ V (
∑
i

Ii) = ∅

This means
∑

i Ii = R. Therefore, 1 ∈
∑

i Ii. By finite generation of ideals:

1 = r1 + r2 + · · ·+ rn

where ri ∈ Ii for finitely many indices i. These finitely many Ui cover Spec(R).
For sobriety: Let Z be an irreducible closed subset of Spec(R). Then Z = V (I) for some ideal

I. Let p =
⋂

q∈Z q. We claim p is prime:
If xy ∈ p but x, y /∈ p, then there exist q1, q2 ∈ Z with x /∈ q1 and y /∈ q2. But then

V (I + (x)) ∪ V (I + (y)) would be a proper decomposition of Z, contradicting irreducibility.
For the quasi-compact open basis: The basic open sets are of the form D(f) = Spec(R) \ V (f)

for f ∈ R.
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1. D(f) ∩D(g) = D(fg) shows closure under finite intersections

2. Quasi-compactness of D(f) follows from quasi-compactness of Spec(Rf ), where Rf is the
localization

8 Polynomial Maps and Algebra Homomorphisms

We now establish the fundamental correspondence between polynomial maps of varieties and homo-
morphisms of their coordinate rings. This provides a key bridge between geometric and algebraic
perspectives.

Theorem 8.1 (Contravariant Functor). Let V ⊆ An and W ⊆ Am be affine varieties over an
algebraically closed field k. There is a natural bijection:

{Polynomial maps V →W} ↔ {k-algebra homomorphisms k[W ] → k[V ]}

Proof. Given a polynomial map ϕ : V →W with coordinate functions ϕ1, . . . , ϕm ∈ k[V ], define

ϕ∗ : k[W ] → k[V ]

by sending each coordinate function yi on W to ϕi ∈ k[V ]. This extends uniquely to a k-algebra
homomorphism since k[W ] is generated by the yi.

Conversely, given a k-algebra homomorphism ψ : k[W ] → k[V ], define ϕ : V → km by

ϕ(p) = (ψ(y1)(p), . . . , ψ(ym)(p))

Since ψ preserves the relations defining W , the image of ϕ lies in W .
These constructions are inverse to each other: Starting with ϕ, the composition ϕ∗(yi) is just ϕi

by definition. Starting with ψ, the composition recovers ψ on generators and hence everywhere.

Proposition 8.2. This correspondence is functorial: If ϕ : V →W and ψ :W → U are polynomial
maps, then

(ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗

This extends naturally to the level of prime and maximal ideals:

Theorem 8.3 (MaxSpec Functor). Let ϕ : V → W be a polynomial map of affine varieties. The
induced homomorphism ϕ∗ : k[W ] → k[V ] gives rise to maps:

ϕSpec : Spec(k[V ]) → Spec(k[W ])

p 7→ (ϕ∗)−1(p)

and

ϕMax : MaxSpec(k[V ]) → MaxSpec(k[W ])

m 7→ (ϕ∗)−1(m)

Proof. We need to verify:

1. If p is prime in k[V ], then (ϕ∗)−1(p) is prime in k[W ]

10



2. If m is maximal in k[V ], then (ϕ∗)−1(m) is maximal in k[W ]

For (1): If fg ∈ (ϕ∗)−1(p), then ϕ∗(fg) = ϕ∗(f)ϕ∗(g) ∈ p. Since p is prime, either ϕ∗(f) ∈ p or
ϕ∗(g) ∈ p, so f or g is in (ϕ∗)−1(p).

For (2): For maximal ideals, we can use the geometric interpretation: Maximal ideals correspond
to points, and the preimage of a point under a polynomial map corresponds to the preimage of its
maximal ideal.

Corollary 8.4 (Geometric Interpretation). Under the identification of points with maximal ideals:

1. ϕMax(mp) = mϕ(p) for any point p ∈ V

2. The map ϕMax : MaxSpec(k[V ]) → MaxSpec(k[W ]) is the same as ϕ : V → W under the
identification of varieties with their maximal spectra

Example 8.5. Consider the inclusion i : A1 → A2 given by x 7→ (x, 0). The corresponding algebra
homomorphism is

i∗ : k[x, y] → k[t], x 7→ t, y 7→ 0

The induced map on maximal ideals takes

ma = (t− a) 7→ (x− a, y)

which is indeed the maximal ideal corresponding to the point (a, 0) in A2.

This functorial perspective reveals that: 1. Geometric maps correspond naturally to algebraic
maps in the opposite direction 2. The correspondence respects composition and algebraic operations
3. The MaxSpec functor provides a bridge between geometric and algebraic viewpoints 4. Points
and maximal ideals are fundamentally the same object viewed from different perspectives

Remark 8.6. This correspondence is a key example of the general principle in algebraic geome-
try that we can study geometric objects through their rings of functions, with geometric maps
corresponding to algebraic ones in the opposite direction.

9 Krull Dimension

The notion of dimension in algebraic geometry can be approached in several equivalent ways. The
most algebraic approach is through chains of prime ideals:

Definition 9.1 (Chain of Prime Ideals). Let R be a ring. A chain of prime ideals is a sequence

p0 ⊊ p1 ⊊ · · · ⊊ pn

where each pi is a prime ideal. We call n the length of the chain.

Definition 9.2 (Height). The height of a prime ideal p in a ring R, written (p), is the supremum
of lengths of chains of prime ideals

p0 ⊊ p1 ⊊ · · · ⊊ pn = p

In other words, (p) measures how far p is above minimal prime ideals.

Definition 9.3 (Krull Dimension). The Krull dimension of a ring R, written dimR, is the supre-
mum of the lengths of all chains of prime ideals in R. For a variety V over a field k, we define its
dimension dimV to be the Krull dimension of its coordinate ring k[V ].
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There’s another natural way to measure dimension - by counting algebraically independent
elements:

Definition 9.4 (Transcendence Degree). For a field extension L/k, the transcendence degree
trdegk(L) is the size of any transcendence basis (maximal algebraically independent subset) of
L over k. For a k-algebra A, we write trdegk(A) for the transcendence degree of its fraction field
over k.

A fundamental result about heights of prime ideals is:

Theorem 9.5 (Principal Ideal Theorem). Let R be a Noetherian ring and let x ∈ R be a non-zero-
divisor. If p is a minimal prime ideal containing (x), then (p) = 1.

Proof. Let p be minimal over (x). Suppose for contradiction that (p) > 1. Then we have a chain

p0 ⊊ p1 ⊊ p

with (x) ⊆ p0.
In R/(x), this gives a chain

p̄0 ⊊ p̄1 ⊊ p̄

Since x is a non-zero-divisor, dimR/(x) = dimR − 1. But p̄ is minimal in R/(x) (as p was
minimal over (x)), contradicting that minimal primes have height 0.

The remarkable fact is that our different notions of dimension coincide:

Proposition 9.6 (Dimension Formula). Let k be a field and let A be a finitely generated k-algebra.
Then

dim(A) = sup
p∈Spec(A)

trdegk(Frac(A/p)).

Moreover, we only need to look at minimal prime ideals. If A is an integral domain, this simplifies
to:

dim(A) = trdegk(Frac(A)).

Proof. The proof is difficult and will be omitted. It can be found in [David Eisenbud: Commutative
algebra with a view toward algebraic Geometry, p. 290, Theorem A].

Here’s a fundamental example:

Corollary 9.7. The polynomial ring k[X1, . . . , Xn] has Krull dimension n.

Proof. The chain
(X1, . . . , Xn) ⊃ (X1, . . . , Xn−1) ⊃ · · · ⊃ (X1) ⊃ (0)

shows dim k[X1, . . . , Xn] ≥ n. The dimension formula then gives equality.

Theorem 9.8. If A is an integral domain containing a field k and finitely generated as a k-algebra,
then

trdegk(Frac(A)) = dim(A).

Proof. By Noether’s Normalization, A is integral over a polynomial subring k[x1, . . . , xn] where
n = trdegk(Frac(A)). Going-up shows dim(A) ≥ n, and the dimension formula gives equality.
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10 Affine Schemes

Definition 10.1 (Locally Ringed Space). A locally ringed space is a pair (X,OX) where X is a
topological space and OX is a sheaf of rings on X such that for each point x ∈ X, the stalk OX,x

is a local ring.

Definition 10.2 (Affine Scheme). An affine scheme is a locally ringed space that is isomorphic to
(Spec(R),OSpec(R)) for some commutative ring R, where OSpec(R) is the structure sheaf of R.

Theorem 10.3. For any commutative ring R, Spec(R) has a natural structure of a locally ringed
space where:

1. The structure sheaf OSpec(R) assigns to each open set U the ring of regular functions on U

2. For each p ∈ Spec(R), the stalk Op is naturally isomorphic to Rp

11 Projective Varieties

Definition 11.1 (Projective Space). The projective space Pn
k over a field k is the set of equivalence

classes of (n+ 1)-tuples (x0 : · · · : xn) of elements of k, not all zero, under the equivalence relation

(x0 : · · · : xn) ∼ (λx0 : · · · : λxn)

for any λ ∈ k×.

Definition 11.2 (Homogeneous Polynomial). A polynomial f ∈ k[x0, . . . , xn] is homogeneous of
degree d if every monomial in f has total degree d.

Definition 11.3 (Projective Variety). A projective variety in Pn
K is an irreducible algebraic set

defined by homogeneous polynomials.

Definition 11.4 (Singular Point). A point p on a variety V is singular if the rank of the Jacobian
matrix at p is less than the dimension of V . A variety is smooth if it has no singular points.

Definition 11.5 (Quadratic Form). Let V be a vector space over a field k. A quadratic form on
V is a function Q : V → k such that:

1. Q(λv) = λ2Q(v) for all λ ∈ k and v ∈ V

2. The function BQ(v, w) = Q(v + w)−Q(v)−Q(w) is bilinear

Given a basis {e1, . . . , en} of V , any quadratic form can be written uniquely as

Q(x1e1 + · · ·+ xnen) =

n∑
i,j=1

aijxixj

where aij = aji are elements of k. The matrix A = (aij) is called the matrix of Q with respect to
the given basis.

Remark 11.6. If char(k) ̸= 2, then BQ is symmetric and determines Q via:

Q(v) =
1

2
BQ(v, v)

When char(k) = 2, this relationship breaks down, and quadratic forms require more careful treat-
ment.

13



Definition 11.7 (Non-degenerate Quadratic Form). A quadratic form Q is called non-degenerate
if its matrix A has full rank, or equivalently, if the associated bilinear form BQ is non-degenerate
(i.e., if BQ(v, w) = 0 for all w implies v = 0).

Theorem 11.8 (Conic Classification). Let C be an irreducible conic in P2
k where k is algebraically

closed. Then:

1. If C is smooth, then C ∼= P1
k

2. If C is singular, then C consists of two lines meeting at a point

Proof. Any conic can be written as:

ax2 + by2 + cz2 + dxy + eyz + fxz = 0

For the smooth case: First, since we assume the conic is smooth, its matrix representation a d/2 f/2
d/2 b e/2
f/2 e/2 c


has rank 3 (non-degenerate quadratic form).

Complete the square in x:

(ax+
d

2
y +

f

2
z)2 + (b− d2

4a
)y2 + (c− f2

4a
)z2 + (e− df

4a
)yz = 0

After change of coordinates (using that k is algebraically closed), this becomes:

X2 + Y 2 + Z2 = 0

We can parametrize this by:

[λ : µ] 7→ [λ2 − µ2 : 2λµ : i(λ2 + µ2)]

giving an isomorphism with P1.
For the singular case: The quadratic form must be degenerate, so after coordinate change (by

Sylvester’s law of inertia):
X2 + Y 2 = 0

This factors as (X + iY )(X − iY ) = 0, giving two lines intersecting at [0 : 0 : 1].

Remark 11.9. This proof uses that the field is algebraically closed in three crucial ways:

1. To diagonalize the quadratic form

2. To ensure the existence of square roots in the parametrization

3. To guarantee that every point on the conic is rational over the field

Definition 11.10 (Veronese Map). The Veronese map νd : Pn → PN where N =
(
n+d
d

)
−1 is given

by:
νd([x0 : · · · : xn]) = [all monomials of degree d in x0, . . . , xn]
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Remark 11.11 (Intuition Behind the Veronese Map). The Veronese map provides a way to embed
projective space into a higher-dimensional projective space while preserving important geometric
properties. Its key features are:

1. It converts equations of degree d in the source to linear equations in the target

2. The image forms a projectively normal variety

3. It provides a natural way to study degree d hypersurfaces in Pn

Example 11.12. For n = 1, d = 2 the Veronese map is:

ν2([x : y]) = [x2 : xy : y2]

Its image is the conic V (XZ − Y 2) in P2.

Definition 11.13 (Segre Embedding). The Segre embedding σ : Pm×Pn → Pmn+m+n is given by:

σ([x0 : · · · : xm], [y0 : · · · : yn]) = [. . . : xiyj : . . .]

Remark 11.14 (Intuition Behind the Segre Embedding). The Segre embedding provides a way to
understand the product of projective spaces as a projective variety. Its significance includes:

1. It realizes the categorical product in algebraic geometry

2. Its image represents separable tensors in the projectivization of a tensor product

3. It provides a model for studying bilinear forms and their geometry

Example 11.15. For m = n = 1, the Segre embedding is:

σ([x0 : x1], [y0 : y1]) = [x0y0 : x0y1 : x1y0 : x1y1]

Its image is the quadric surface V (XW − Y Z) ⊆ P3.

Proposition 11.16 (Properties of Segre Embedding). The image of σ : Pm × Pn → Pmn+m+n is
cut out by the quadrics:

Xi,jXk,l = Xi,lXk,j

where Xi,j represents the coordinate corresponding to xiyj.

Proof. These equations clearly hold on the image since:

(xiyj)(xkyl) = (xixk)(yjyl) = (xiyl)(xkyj)

Conversely, given a point satisfying these equations, we can recover the preimage by fixing any
non-zero coordinate and solving for the remaining coordinates using the relations.
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12 Polynomial Maps Between Varieties

Definition 12.1 (Regular Map). A regular map between affine varieties V and W is a function
ϕ : V → W that can be written locally as a ratio of polynomials where the denominator doesn’t
vanish. More precisely, for each p ∈ V , there is an open neighborhood U of p and polynomials
f1, . . . , fn, g such that:

ϕ(x) =

(
f1(x)

g(x)
, . . . ,

fn(x)

g(x)

)
for all x ∈ U where g(x) ̸= 0.

Example 12.2 (Projection Map). Consider the hyperbola V = V (xy−1) ⊆ A2 and the punctured
line W = A1 \ {0}. The projection map π : V →W given by

π(x, y) = x

is both a polynomial map and an isomorphism.

Proof. First, we verify that π(V ) ⊆ W : If (a, b) ∈ V , then ab = 1, so a ̸= 0 and thus π(a, b) = a ∈
A1 \ {0}.

The inverse map ψ : W → V given by ψ(x) = (x, 1x) is regular since x is invertible on W . The
composition in either direction gives the identity, proving π is an isomorphism.

Example 12.3 (Normalization of Cusp). Let V = V (y2 − x3) ⊆ A2 be the cuspidal cubic. The
map ϕ : A1 → V given by:

ϕ(t) = (t2, t3)

provides a normalization of V .

Proposition 12.4. The map ϕ is:

1. Well-defined (image lies in V )

2. Surjective

3. Injective except at t = 0

4. A normalization of V

Proof. For well-definedness: For any t ∈ A1:

(ϕ(t))22 − (ϕ(t))31 = (t3)2 − (t2)3 = t6 − t6 = 0

For surjectivity: Let (a, b) ∈ V . If (a, b) = (0, 0), then (0, 0) = ϕ(0). Otherwise, t = 3
√
b works

since b2 = a3.
For injectivity except at 0: If ϕ(s) = ϕ(t), then s2 = t2 and s3 = t3. If s ̸= 0, this implies s = t.

At t = 0, we have the singular point.
For normalization: A1 is normal, and ϕ induces a finite birational map. The result follows from

the universal property of normalization.

Example 12.5 (Twisted Cubic). The twisted cubic curve is the image of P1 under the map:

ϕ([s : t]) = [s3 : s2t : st2 : t3]
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Proposition 12.6. The image of ϕ is the intersection of the quadrics:

XZ = Y 2

YW = Z2

XW = Y Z

Proof. First, we verify these equations hold on the image by direct substitution: Let X = s3,
Y = s2t, Z = st2, W = t3. Then:

XZ = s3(st2) = s4t2 = (s2t)2 = Y 2

YW = (s2t)(t3) = s2t4 = (st2)2 = Z2

XW = s3t3 = (s2t)(st2) = Y Z

Conversely, given a point [a : b : c : d] satisfying these equations:

• If a ̸= 0, set s = 1 and solve for t

• If d ̸= 0, set t = 1 and solve for s

This shows every point satisfying the equations lies in the image.

13 Applications and Exercises

Example 13.1 (Computing Dimension). Let’s compute the Krull dimension of k[x, y, z]/(xy−z2):

Proof. First, note that xy − z2 is irreducible (as it is quadratic in z and cannot be factored), so
k[x, y, z]/(xy − z2) is an integral domain and (0) is prime.

By the Principal Ideal Theorem, any minimal prime over (xy − z2) has height 1. Since xy − z2

is irreducible, (xy − z2) is itself prime of height 1.
Every maximal ideal containing (xy − z2) has height 2 (it cannot be more as dim k[x, y, z] = 3

and we’ve used height 1 for (xy − z2)).
Therefore, dim k[x, y, z]/(xy − z2) = 2.

The following exercises explore fundamental properties of algebraic geometry. Complete solu-
tions are provided after the exercises.

Show that for any field k, dim k[x1, . . . , xn] = n.
Prove that if R is a PID, then Spec(R) has dimension 1.
Show that the projective closure of the curve y = x2 in A2 has exactly one point at infinity.

14 Solutions to Exercises

[Solution to Exercise 1] We prove dim k[x1, . . . , xn] = n in two steps.
First, we show dim k[x1, . . . , xn] ≥ n: Consider the chain of prime ideals:

(0) ⊊ (x1) ⊊ (x1, x2) ⊊ · · · ⊊ (x1, . . . , xn)

This chain has length n, showing the dimension is at least n.
For the reverse inequality, let p0 ⊊ p1 ⊊ · · · ⊊ pm be any chain of prime ideals.
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By Noether’s Normalization Lemma, k[x1, . . . , xn]/p0 has transcendence degree at most n over
k. Each successive quotient reduces transcendence degree by at least 1, so m ≤ n.

Therefore dim k[x1, . . . , xn] = n.
[Solution to Exercise 2] Let R be a PID. We prove Spec(R) has dimension 1.
First, let p0 ⊊ p1 ⊊ · · · ⊊ pn be a chain of prime ideals in R.
Since R is a domain, (0) is prime and must be p0.
In a PID, any non-zero prime ideal is maximal. Indeed, if (p) is prime and (p) ⊊ I for some

ideal I, then I = R since every ideal is principal.
Therefore, p1 must be maximal, so n = 1.
To show dimR ≥ 1, observe that for any prime element p ∈ R, we have the chain:

(0) ⊊ (p)

Therefore dimR = 1.
[Solution to Exercise 3] To find the projective closure of y = x2, we:
1. Homogenize the equation: Replace x with X

Z and y with Y
Z to get:

Y

Z
=

(
X

Z

)2

Multiply through by Z2:
Y Z = X2

2. At infinity (set Z = 0):
0 = X2

Therefore X = 0, and Y can be any non-zero value.
3. After normalization, this gives exactly one point [0 : 1 : 0] at infinity.
4. For uniqueness:

• Any point at infinity must satisfy Z = 0

• This forces X = 0 by the equation

• Since not all coordinates can be zero, Y ̸= 0

• All points [0 : a : 0] for a ̸= 0 are equivalent to [0 : 1 : 0] in projective space

Therefore, there is exactly one point at infinity.
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